Traceable Nanoscale Measurements of High Dielectric Constant by Scanning Microwave Microscopy

Author:

Richert Damien,Morán-Meza José,Kaja KhaledORCID,Delvallée AlexandraORCID,Allal Djamel,Gautier Brice,Piquemal FrançoisORCID

Abstract

The importance of high dielectric constant materials in the development of high frequency nano-electronic devices is undeniable. Their polarization properties are directly dependent on the value of their relative permittivity. We report here on the nanoscale metrological quantification of the dielectric constants of two high-κ materials, lead zirconate titanate (PZT) and lead magnesium niobate-lead titanate (PMN-PT), in the GHz range using scanning microwave microscopy (SMM). We demonstrate the importance of the capacitance calibration procedure and dimensional measurements on the weight of the combined relative uncertainties. A novel approach is proposed to correct lateral dimension measurements of micro-capacitive structures using the microwave electrical signatures, especially for rough surfaces of high-κ materials. A new analytical expression is also given for the capacitance calculations, taking into account the contribution of fringing electric fields. We determine the dielectric constant values εPZT = 445 and εPMN-PT = 641 at the frequency around 3.6 GHz, with combined relative uncertainties of 3.5% and 6.9% for PZT and PMN-PT, respectively. This work provides a general description of the metrological path for a quantified measurement of high dielectric constants with well-controlled low uncertainty levels.

Funder

European Metrology Program for Innovation and Research

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Reference53 articles.

1. Dielectric Materials for Microelectronics;Wallace,2017

2. International Technology Roadmap for Semiconductors 2015 Edition “More Moore”,2015

3. Introducing 10-nm FinFET Technology in Microwind. HAL Id hal-01558775 2017 https://hal.archives-ouvertes.fr/hal-01551695

4. 2019 HIR Chapter 15: Materials and Emerging Research Materials

5. IEEE Electronics Packaging Society (EPS): 2019 http://eps.ieee.org/hir

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. 3D Imaging and Quantitative Subsurface Dielectric Constant Measurement Using Peak Force Kelvin Probe Force Microscopy;Advanced Materials Interfaces;2023-11-09

2. A Fully-Numerical Environment for Evaluating the Robustness of the Short Open Load Calibration for Capacitance Measurements in Scanning Microwave Microscopy;2023 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO);2023-06-28

3. Nanometrology;Nanomaterials;2022-10-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3