Study of the Metal–Support Interaction and Electronic Effect Induced by Calcination Temperature Regulation and Their Effect on the Catalytic Performance of Glycerol Steam Reforming for Hydrogen Production

Author:

Zhu Songshan,Wang Yunzhu,Lu Jichang,Lu Huihui,He Sufang,Song Di,Luo Yongming,Liu Jiangping

Abstract

Steam reforming of glycerol to produce hydrogen is considered to be the very promising strategy to generate clean and renewable energy. The incipient-wetness impregnation method was used to load Ni on the reducible carrier TiO2 (P25). In the process of catalyst preparation, the interaction and electronic effect between metal Ni and support TiO2 were adjusted by changing the calcination temperature, and then the activity and hydrogen production of glycerol steam reforming reaction (GSR) was explored. A series of modern characterizations including XRD, UV-vis DRS, BET, XPS, NH3-TPD, H2-TPR, TG, and Raman have been applied to systematically characterize the catalysts. The characterization results showed that the calcination temperature can contribute to varying degrees of influences on the acidity and basicity of the Ni/TiO2 catalyst, the specific surface area, together with the interaction force between Ni and the support. When the Ni/TiO2 catalyst was calcined at 600 °C, the Ni species can be produced in the form of granular NiTiO3 spinel. Consequently, due to the moderate metal–support interaction and electronic activity formed between the Ni species and the reducible support TiO2 in the NiO/Ti-600C catalyst, the granular NiTiO3 spinel can be reduced to a smaller Ni0 at a lower temperature, and thus to exhibit the best catalytic performance.

Funder

National Natural Science Foundation of China

Applied Basic Research Foundation of Yunnan Province

Yunnan Ten Thousand Talents Plan Young & Elite talents Project

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3