Inkjet Printing Infiltration of the Doped Ceria Interlayer in Commercial Anode-Supported SOFCs

Author:

Tomov Rumen I.ORCID,Mitchel-Williams Thomas B.ORCID,Venezia EleonoraORCID,Kawalec Michal,Krauz Mariusz,Kumar Ramachandran Vasant,Glowacki Bartek A.

Abstract

Single-step inkjet printing infiltration with doped ceria Ce0.9Ye0.1O1.95 (YDC) and cobalt oxide (CoxOy) precursor inks was performed in order to modify the properties of the doped ceria interlayer in commercial (50 × 50 × 0.5 mm3 size) anode-supported SOFCs. The penetration of the inks throughout the La0.8Sr0.2Co0.5Fe0.5O3−δ porous cathode to the Gd0.1Ce0.9O2 (GDC) interlayer was achieved by optimisation of the inks’ rheology jetting parameters. The low-temperature calcination (750 °C) resulted in densification of the Gd-doped ceria porous interlayer as well as decoration of the cathode scaffold with nanoparticles (~20–50 nm in size). The I–V testing in pure hydrogen showed a maximum power density gain of ~20% at 700 °C and ~97% at 800 °C for the infiltrated cells. The latter effect was largely assigned to the improvement in the interfacial Ohmic resistance due to the densification of the interlayer. The EIS study of the polarisation losses of the reference and infiltrated cells revealed a reduction in the activation polarisations losses at 700 °C due to the nano-decoration of the La0.8Sr0.2Co0.5Fe0.5O3−δ scaffold surface. Such was not the case at 800 °C, where the drop in Ohmic losses was dominant. This work demonstrated that single-step inkjet printing infiltration, a non-disruptive, low-cost technique, can produce significant and scalable performance enhancements in commercial anode-supported SOFCs.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Reference63 articles.

1. Advanced anodes for high-temperature fuel cells

2. Fuel Cell Fundamentals;O’Hayre,2009

3. Solid Oxide Fuel Cell Technology: Principles, Performance and Operations;Huang,2009

4. Evolution of the electrochemical interface in high-temperature fuel cells and electrolysers

5. Lowering the Temperature of Solid Oxide Fuel Cells

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3