Simulation of Solar Cells with Integration of Optical Nanoantennas

Author:

Pinheiro Caetano Inês Margarida,N. Torres João PauloORCID,Marques Lameirinhas Ricardo A.ORCID

Abstract

The evolution of nanotechnology has provided a better understanding of light-matter interaction at a subwavelength scale and has led to the development of new devices that can possibly play an important role in future applications. Nanoantennas are an example of such devices, having gained interest in recent years for their application in the field of photovoltaic technology at visible and infrared wavelengths, due to their ability to capture and confine energy of free-propagating waves. This property results from a unique phenomenon called extraordinary optical transmission (EOT) where, due to resonant behavior, light passing through subwavelength apertures in a metal film can be transmitted in greater orders of magnitude than that predicted by classical theories. During this study, 2D and 3D models featuring a metallic nanoantenna array with subwavelength holes coupled to a photovoltaic cell are simulated using a Finite Element Tool. These models present with slight variations between them, such as the position of the nanoantenna within the structure, the holes’ geometry and the type of cell, in order to verify how its optical response is affected. The results demonstrate that the coupling of nanoantennas to solar cells can be advantageous and improve the capture and absorption of radiation. It is concluded that aperture nanoantennas may concentrate radiation, meaning that is possible to tune the electric field peak and adjust absorption on the main layers. This may be important because it might be possible to adjust solar cell performance to the global regions’ solar spectrum by only adjusting the nanoantenna parameters.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3