Recent Advances in Layered Double Hydroxide-Based Electrochemical and Optical Sensors

Author:

Kim Andrew,Varga Imre,Adhikari Arindam,Patel RajkumarORCID

Abstract

Layered double hydroxides (LDHs) have attracted considerable attention as promising materials for electrochemical and optical sensors owing to their excellent catalytic properties, facile synthesis strategies, highly tunable morphology, and versatile hosting ability. LDH-based electrochemical sensors are affordable alternatives to traditional precious-metal-based sensors, as LDHs can be synthesized from abundant inorganic precursors. LDH-modified probes can directly catalyze or host catalytic compounds that facilitate analyte redox reactions, detected as changes in the probe’s current, voltage, or resistance. The porous and lamellar structure of LDHs allows rapid analyte diffusion and abundant active sites for enhanced sensor sensitivity. LDHs can be composed of conductive materials such as reduced graphene oxide (rGO) or metal nanoparticles for improved catalytic activity and analyte selectivity. As optical sensors, LDHs provide a spacious, stable structure for synergistic guest–host interactions. LDHs can immobilize fluorophores, chemiluminescence reactants, and other spectroscopically active materials to reduce the aggregation and dissolution of the embedded sensor molecules, yielding enhanced optical responses and increased probe reusability. This review discusses standard LDH synthesis methods and overviews the different electrochemical and optical analysis techniques. Furthermore, the designs and modifications of exemplary LDHs and LDH composite materials are analyzed, focusing on the analytical performance of LDH-based sensors for key biomarkers and pollutants, including glucose, dopamine (DA), H2O2, metal ions, nitrogen-based toxins, and other organic compounds.

Funder

Hungarian National Research, Development and Innovation Office

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3