A Rational Analysis on Key Parameters Ruling Zerovalent Iron-Based Treatment Trains: Towards the Separation of Reductive from Oxidative Phases

Author:

Sciscenko IvánORCID,Arques Antonio,Escudero-Oñate Carlos,Roccamante Melina,Ruiz-Delgado Ana,Miralles-Cuevas Sara,Malato Sixto,Oller Isabel

Abstract

The development of treatment trains for pollutant degradation employing zerovalent iron has been attracting a lot of interest in the last few years. This approach consists of pre-treatment only with zerovalent iron, followed by a Fenton oxidation taking advantage of the iron ions released in the first step. In this work, the advantages/disadvantages of this strategy were studied employing commercial zerovalent iron microparticles (mZVI). The effect of the initial amount of mZVI, H2O2, pH, conductivity, anions and dissolved oxygen were analysed using p-nitrobenzoic acid (PNBA) as model pollutant. 83% reduction of PNBA 6 µM into p-aminobenzoic acid (PABA) was achieved in natural water at an initial pH 3.0 and 1.4 g/L of mZVI, under aerobic conditions, in 2 h. An evaluation of the convenience of removing mZVI after the reductive phase before the Fenton oxidation was investigated together with mZVI reusability. The Fenton step against the more reactive PABA required 50 mg/L of H2O2 to achieve more than 96% removal in 15 min at pH 7.5 (final pH from the reductive step). At least one complete reuse cycle (reduction/oxidation) was achieved with the separated mZVI. This approach might be interesting to treat wastewater containing pollutants initially resistant to hydroxyl radicals.

Funder

European Commission

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3