Analysis of Ionicity-Magnetism Competition in 2D-MX3 Halides towards a Low-Dimensional Materials Study Based on GPU-Enabled Computational Systems

Author:

Kartsev AlexeyORCID,Malkovsky SergeyORCID,Chibisov AndreyORCID

Abstract

The acceleration of parallel high-throughput first-principle calculations in the context of 3D (three dimensional) periodic boundary conditions for low-dimensional systems, and particularly 2D materials, is an important issue for new material design. Where the scalability rapidly deflated due to the use of large void unit cells along with a significant number of atoms, which should mimic layered structures in the vacuum space. In this report, we explored the scalability and performance of the Quantum ESPRESSO package in the hybrid central processing unit - graphics processing unit (CPU-GPU) environment. The study carried out in the comparison to CPU-based systems for simulations of 2D magnets where significant improvement of computational speed was achieved based on the IBM ESSL SMP CUDA library. As an example of physics-related results, we have computed and discussed the ionicity-covalency and related ferro- (FM) and antiferro-magnetic (AFM) exchange competitions computed for some CrX3 compounds. Further, it has been demonstrated how this exchange interplay leads to high-order effects for the magnetism of the 1L-RuCl3 compound.

Funder

Ministry of Science and Higher Education of the Russian Federation

Russian Foundation for Fundamental Investigations

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3