Optimization of Metal-Assisted Chemical Etching for Deep Silicon Nanostructures

Author:

Akan RabiaORCID,Vogt UlrichORCID

Abstract

High-aspect ratio silicon (Si) nanostructures are important for many applications. Metal-assisted chemical etching (MACE) is a wet-chemical method used for the fabrication of nanostructured Si. Two main challenges exist with etching Si structures in the nanometer range with MACE: keeping mechanical stability at high aspect ratios and maintaining a vertical etching profile. In this work, we investigated the etching behavior of two zone plate catalyst designs in a systematic manner at four different MACE conditions as a function of mechanical stability and etching verticality. The zone plate catalyst designs served as models for Si nanostructures over a wide range of feature sizes ranging from 850 nm to 30 nm at 1:1 line-to-space ratio. The first design was a grid-like, interconnected catalyst (brick wall) and the second design was a hybrid catalyst that was partly isolated, partly interconnected (fishbone). Results showed that the brick wall design was mechanically stable up to an aspect ratio of 30:1 with vertical Si structures at most investigated conditions. The fishbone design showed higher mechanical stability thanks to the Si backbone in the design, but on the other hand required careful control of the reaction kinetics for etching verticality. The influence of MACE reaction kinetics was identified by lowering the oxidant concentration, lowering the processing temperature and by isopropanol addition. We report an optimized MACE condition to achieve an aspect ratio of at least 100:1 at room temperature processing by incorporating isopropanol in the etching solution.

Funder

Swedish Research Council

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3