Abstract
Phosphorus-doped hierarchically porous carbon (HPC) is prepared with the assistance of freeze-drying using colloid silica and phytic acid dipotassium salt as a hard template and phosphorus source, respectively. Intensive material characterizations show that the freeze-drying process can effectively promote the porosity of HPC. The specific surface area and P content for HPC can reach up to 892 m2 g−1 and 2.78 at%, respectively. Electrochemical measurements in aqueous KOH and H2SO4 electrolytes reveal that K+ of a smaller size can more easily penetrate the inner pores compared with SO42−, while the developed microporosity in HPC is conducive to the penetration of SO42−. Moreover, P-doping leads to a high operation potential of 1.5 V for an HPC-based symmetric supercapacitor, resulting in an enhanced energy density of 16.4 Wh kg−1. Our work provides a feasible strategy to prepare P-doped HPC with a low dosage of phosphorus source and a guide to construct a pore structure suitable for aqueous H2SO4 electrolyte.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Shandong Province
Taishan Scholar Foundation
Subject
General Materials Science,General Chemical Engineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献