Hydrogenated Amorphous TiO2−x and Its High Visible Light Photoactivity

Author:

Feng GuangORCID,Hu Mengyun,Yuan Shuai,Nan Junyi,Zeng Heping

Abstract

Hydrogenated crystalline TiO2 with oxygen vacancy (OV) defect has been broadly investigated in recent years. Different from crystalline TiO2, hydrogenated amorphous TiO2−x for advanced photocatalytic applications is scarcely reported. In this work, we prepared hydrogenated amorphous TiO2−x (HA-TiO2−x) using a unique liquid plasma hydrogenation strategy, and demonstrated its highly visible-light photoactivity. Density functional theory combined with comprehensive analyses was to gain fundamental understanding of the correlation among the OV concentration, electronic band structure, photon capturing, reactive oxygen species (ROS) generation, and photocatalytic activity. One important finding was that the narrower the bandgap HA-TiO2−x possessed, the higher photocatalytic efficiency it exhibited. Given the narrow bandgap and extraordinary visible-light absorption, HA-TiO2−x showed excellent visible-light photodegradation in rhodamine B (98.7%), methylene blue (99.85%), and theophylline (99.87) within two hours, as well as long-term stability. The total organic carbon (TOC) removal rates of rhodamine B, methylene blue, and theophylline were measured to 55%, 61.8%, and 50.7%, respectively, which indicated that HA-TiO2−x exhibited high wastewater purification performance. This study provided a direct and effective hydrogenation method to produce reduced amorphous TiO2−x which has great potential in practical environmental remediation.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3