Abstract
In this current work, antimicrobial films based on starch, poly(butylene adipate-co-terephthalate) (PBAT), and a commercially available AgNPs@SiO2 antibacterial composite particle product were produced by using a melt blending and blowing technique. The effects of AgNPs@SiO2 at various loadings (0, 1, 2, 3, and 4 wt%) on the physicochemical properties and antibacterial activities of starch/PBAT composite films were investigated. AgNPs@SiO2 particles were more compatible with starch than PBAT, resulting in preferential distribution of AgNPs@SiO2 in the starch phase. Infusion of starch/PBAT composite films with AgNPs@SiO2 marginally improved mechanical and water vapor barrier properties, while surface hydrophobicity increased as compared with films without AgNPs@SiO2. The composite films displayed superior antibacterial activities against both Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria. The sample loaded with 1 wt% AgNPs@SiO2 (SPA-1) showed nearly 90% inhibition efficiency on the tested microorganisms. Furthermore, a preliminary study on peach and nectarine at 53% RH and 24 °C revealed that SPA-1 film inhibited microbial spoilage and extended the product shelf life as compared with SPA-0 and commercial LDPE packaging materials. The high-throughput production method and strong antibacterial activities of the starch/PBAT/AgNPs@SiO2 composite films make them promising as antimicrobial packaging materials for commercial application.
Subject
General Materials Science,General Chemical Engineering
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献