Abstract
Evaporative cooling is one of the most efficient techniques to reduce heat stress in cows in agricultural facilities. Additionally, compost-bedded pack barn has been shown to improve the welfare and production of cows. Two techniques were combined and analysed by developing a computational fluid dynamics (CFD) model of a tunnel-ventilated compost-bedded packed barn that integrated the heat and airflow dynamics of an evaporative pad cooling system. This allowed us to study the distribution of dry-bulb temperature, relative humidity and airflow velocity inside the barn based on the external environmental conditions, thickness of the pad, water temperature and specific manufacturer characteristics of the pad, providing optimal cooling pad location, size and operating conditions in the barn. Employing experimental data the CFD model was validated showing good agreement. The Equivalent Temperature Index for dairy Cattle (ETIC) was used to determine the level of stress of the cows considering the airflow velocity. It was found a moderate stress due to high relative humidity and low airflow velocity. From the predicted results, it was recommended to increase the airflow velocity above 3 m s−1 when simultaneously the external dry-bulb temperature and relative humidity exceed 30 °C and 55%, respectively, simultaneously. Additionally, installation of baffles at the pad outlet to drive the airflow to the floor was suggested to improve the drying of the compost-bedded closed to the pads, where a low airflow velocity region was established.
Subject
General Veterinary,Animal Science and Zoology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献