Effects of High Ambient Temperature on Small Intestinal Morphology and Colonic Microbiota in Weaned Piglets

Author:

Xing Shuaibing,Chen ShuaiORCID,Zhao Ying,Luo Yuheng,Yu BingORCID,He JunORCID,Huang ZhiqingORCID,Zheng Ping,Mao XiangbingORCID,Luo Junqiu,Yan Hui,Yu Jie

Abstract

A total of 16 crossbred (Duroc × Landrace × Yorkshire) barrows, with an average initial body weight of 8.61 ± 0.24 kg (28 days of age), were randomly allotted into the control group (CON group) and high ambient temperature group (HT group) with 8 replicates per group, 1 pig per replicate. The ambient temperature of the CON group was controlled at 26 ± 1 °C, and the HT group was controlled at 35 ± 1 °C. The study lasted for 21 days. Our results showed that high ambient temperature significantly decreased the average daily feed intake (ADFI) and average daily gain (ADG) of piglets (p < 0.05), and the feed-to-gain ratio was significantly increased (p < 0.05). The liver index, spleen index, and thymus index of piglets in the HT group were significantly decreased (p < 0.05). The villous height (VH) of the duodenum, jejunum, and ileum of piglets in the HT group was significantly decreased (p < 0.05), whereas the crypt depth (CD) of the duodenum was significantly increased (p < 0.05), and the VH-to-CD ratio of the duodenum and ileum was significantly decreased (p < 0.05). The piglets in the HT group showed a higher (p < 0.05) observed-species index, PD whole tree index, and Shannon index, indicating that there was a significant difference in species richness and diversity between the two groups. At the genus level, the piglets in the HT group showed a greater (p < 0.05) percent of Desulfovibrio, Occillibater, and Catenisphaera. HT reduced glycan biosynthesis and metabolism, transport and catabolism, lipid metabolism, amino acids metabolism, secondary metabolites biosynthesis, aging, endocrine system, signaling molecules, and interaction of colon microbiota (p < 0.05), and increased signal transduction, cell motility, transcription, and genetic information processing (p < 0.05).

Funder

National Key Research and Development Program of China

China Agriculture Research System of MOF and MARA

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3