Three-Dimensional Source Localization with Sparse Symmetric Cross Array

Author:

Wu HaoweiORCID,Shi Yiqiao,Ou JinglanORCID

Abstract

Three-dimensional (3-D) localization information, including elevation angle, azimuth angle, and range, is important for locating a single source with spherical wave-fronts. Aiming to reduce the high computational complexity of the classical 3-D multiple signal classification (3D-MUSIC) localization method, a novel low-complexity reduced-dimension MUSIC (RD-MUSIC) algorithm based on the sparse symmetric cross array (SSCA) is proposed in this article. The RD-MUSIC converts the 3-D exhaustive search into three one-dimensional (1-D) searches, where two of them are obtained by a two-stage reduced-dimension method to find the angles, and the remaining one is utilized to obtain the range. In addition, a detailed complexity analysis is provided. Simulation results demonstrate that the performance of the proposed algorithm is extremely close to that of the existing rank-reduced MUSIC (RARE-MUSIC) and 3D-MUSIC algorithms, whereas the complexity of the proposed method is significantly lower than that of the others, which is a big advantage in practice.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3