Redox Active Organic-Carbon Composites for Capacitive Electrodes: A Review

Author:

N’Diaye JeanneORCID,Bagchi RaunaqORCID,Howe Jane Y.,Lian KerynORCID

Abstract

The pressing concerns of environmental sustainability and growing needs of clean energy have raised the demands of carbon and organic based energy storage materials to a higher level. Redox-active organic-carbon composites electrodes are emerging to be enablers for high-performance, high power and long-lasting energy storage solutions, especially for electrochemical capacitors (EC). This review discusses the electrochemical redox active organic compounds and their composites with various carbonaceous materials focusing on capacitive performance. Starting with the most common conducting polymers, we expand the scope to other emerging redox active molecules, compounds and polymers as well as common carbonaceous substrates in composite electrodes, including graphene, carbon nanotube and activated carbon. We then discuss the first-principles computational studies pertaining to the interactions between the components in the composites. The fabrication methodologies for the composites with thin organic coatings are presented with their merits and shortcomings. The capacitive performances and features of the redox active organic-carbon composite electrodes are then summarized. Finally, we offer some perspectives and future directions to achieve a fundamental understanding and to better design organic-carbon composite electrodes for ECs.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3