Monitoring Littoral Platform Downwearing Using Differential SAR Interferometry

Author:

Mider GosiaORCID,Lawrence James,Mason PhilippaORCID,Ghail RichardORCID

Abstract

A methodology for the remotely sensed monitoring, measurement and quantification of littoral zone platform downwearing has been developed and is demonstrated, using Persistent Scatterer Interferometric Synthetic Aperture Radar data and analysis. The research area is a 30 km section of coast in East Sussex, UK. This area combines a range of coastal environments and is characterised by the exposure of chalk along the cliffs and coastal platform. Persistent Scatterer Interferometry (PSI) has been employed, using 3.5 years of Sentinel-1 SAR data. The results demonstrate an average ground level change of −0.36 mm a−1 across the research area, caused by platform downwearing. Protected sections of coast are downwearing at an average of −0.33 mm a−1 compared to unprotected sections, which are downwearing more rapidly at an average rate of −1.10 mm a−1. The material properties of the chalk formations in the platform were considered, and in unprotected areas the weakest chalk types eroded at higher rates (−0.66 mm a−1) than the more resistant formations (−0.53 mm a−1). At a local scale, results were achieved in three studies to demonstrate variations between urban and rural environments. Individual persistent scatterer point values provided a near-continuous sequence of measurements, which allowed the effects of processes to be evaluated. The results of this investigation show an effective way of retrospective and ongoing monitoring of platform downwearing, erosion and other littoral zone processes, at regional, local and point-specific scales.

Funder

Engineering and Physical Sciences Research Council

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3