Qualifications of Rice Growth Indicators Optimized at Different Growth Stages Using Unmanned Aerial Vehicle Digital Imagery

Author:

Qiu Zhengchao,Xiang Haitao,Ma Fei,Du ChangwenORCID

Abstract

The accurate estimation of the key growth indicators of rice is conducive to rice production, and the rapid monitoring of these indicators can be achieved through remote sensing using the commercial RGB cameras of unmanned aerial vehicles (UAVs). However, the method of using UAV RGB images lacks an optimized model to achieve accurate qualifications of rice growth indicators. In this study, we established a correlation between the multi-stage vegetation indices (VIs) extracted from UAV imagery and the leaf dry biomass, leaf area index, and leaf total nitrogen for each growth stage of rice. Then, we used the optimal VI (OVI) method and object-oriented segmentation (OS) method to remove the noncanopy area of the image to improve the estimation accuracy. We selected the OVI and the models with the best correlation for each growth stage to establish a simple estimation model database. The results showed that the OVI and OS methods to remove the noncanopy area can improve the correlation between the key growth indicators and VI of rice. At the tillering stage and early jointing stage, the correlations between leaf dry biomass (LDB) and the Green Leaf Index (GLI) and Red Green Ratio Index (RGRI) were 0.829 and 0.881, respectively; at the early jointing stage and late jointing stage, the coefficient of determination (R2) between the Leaf Area Index (LAI) and Modified Green Red Vegetation Index (MGRVI) was 0.803 and 0.875, respectively; at the early stage and the filling stage, the correlations between the leaf total nitrogen (LTN) and UAV vegetation index and the Excess Red Vegetation Index (ExR) were 0.861 and 0.931, respectively. By using the simple estimation model database established using the UAV-based VI and the measured indicators at different growth stages, the rice growth indicators can be estimated for each stage. The proposed estimation model database for monitoring rice at the different growth stages is helpful for improving the estimation accuracy of the key rice growth indicators and accurately managing rice production.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3