Abstract
In this study we used RADARSAT-2 and Sentinel-1 Synthetic Aperture Radar data for measuring subsidence above a flooded potash mine, which is almost entirely located within the city of Berezniki (Perm Krai, Russia), population 150,000. This area has experienced very fast subsidence since October 2006 when the integrity of the Berezniki-1 mine was compromised, resulting in water intrusion, subsequent flooding and closure of the mine. Due to the ongoing dissolution of carnallite, subsidence in this region is expected to continue in the foreseeable future. In addition to rapid subsidence, at least five sinkholes have formed in the region, with the largest being 440 × 320 m. We observed ground subsidence during the period October 2011–April 2014 (RADARSAT-2) with a vertical rate up to 14 cm/year and horizontal rate up to 10 cm/year; during the period July 2016–June 2020 (Sentinel-1) with a vertical rate up to 17 cm/year. Our results were validated by precise leveling, with a coefficient of correlation of 0.75. Subsidence faster than 17 cm/year observed by precise leveling was not resolvable with Differential Interferometric Synthetic Aperture Radar (DInSAR). Our results show the complementary nature of ground-based and space-borne measurement techniques. The precise leveling captures subsidence along profile lines with high precision but lower temporal resolution, while DInSAR captures subsidence with high spatial and temporal resolutions but with lower precision. DInSAR is also significantly affected by decorrelation outside of urban areas. An important advantage of our methodology is the ability to measure the horizontal east component of the ground deformation when both, ascending and descending, data are available. This measurement directly characterizes the level of anthropogenic load on buildings and infrastructure. We recommend continuing monitoring subsidence using both measurement techniques, which can also be complemented by continuous Global Navigation Satellite System (GNSS).
Funder
Russian Science Foundation
Subject
General Earth and Planetary Sciences
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献