Variability of Diurnal Sea Surface Temperature during Short Term and High SST Event in the Western Equatorial Pacific as Revealed by Satellite Data

Author:

Wirasatriya AnindyaORCID,Hosoda Kohtaro,Setiawan Joga Dharma,Susanto R. DwiORCID

Abstract

Near-surface diurnal warming is an important process in the climate system, driving exchanges of water vapor and heat between the ocean and the atmosphere. The occurrence of the hot event (HE) is associated with the high diurnal sea surface temperature amplitude (δSST), which is defined as the difference between daily maximum and minimum sea surface temperature (SST). However, previous studies still show some inconsistency for the area of HE occurrence and high δSST. The present study produces global δSST data based on the SST, sea surface wind data derived from microwave radiometers, and solar radiation data obtained from visible/infrared radiometers. The value of δSSTs are estimated and validated over tropical oceans and then used for investigating HE in the western equatorial Pacific. A three-way error analysis was conducted using in situ mooring buoy arrays and geostationary SST measurements by the Himawari-8 and Geostationary Operational Environmental Satellite (GOES). The standard deviation error of daily and 10-day validation is around 0.3 °C and 0.14–0.19 °C, respectively. Our case study in the western Pacific (from 110°E to 150°W) shows that the area of HE occurrence coincided well with the area of high δSST. Climatological analysis shows that the collocated area between high occurrence rate of HE and high δSST, which coincides with the western Pacific warm pool region in all seasons. Thus, this study provides more persuasive evidence of the relation between HE occurrence and high δSST.

Funder

Universitas Diponegoro

Japan Aerospace Exploration Agency

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3