Compact Polarimetry Response to Modeled Fast Sea Ice Thickness

Author:

Dabboor MohammedORCID,Shokr Mohammed

Abstract

Compact Polarimetric (CP) Synthetic Aperture Radar (SAR) is expected to gain more and more ground for Earth observation applications in the coming years. This comes in light of the recently launched RADARSAT Constellation Mission (RCM), which uniquely provides CP SAR imagery in operational mode. In this study, we present observations about the sensitivity of CP SAR imagery to thickness of thermodynamically-grown fast sea ice during early ice growth (September–December 2017) in the Resolute Bay area, Canadian Central Arctic. Fast ice is most suitable to use for this preliminary study since it exhibits only thermodynamic growth in absence of ice mobility and deformation. Results reveal that ice thickness up to 30 cm can be retrieved using several CP parameters from the tested set. This ice thickness corresponds to the thickness of young ice. We found the surface scattering mechanism to be dominant during the early ice growth, exposing an increasing tendency up to 30 cm thickness with a correlation coefficient with the thickness equal to 0.86. The degree of polarization was found to be the parameter with the highest correlation up to 0.95. While thickness retrieval within the same range is also possible using parameters from Full Polarimetric (FP) SAR parameters as shown in previous studies, the advantage of using CP SAR mode is the much larger swath coverage, which is an operational requirement.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Investigation of the sensitivity response of Touzi target scattering decomposition to modeled early ice growth;International Journal of Remote Sensing;2023-06-03

2. Satellite Sensors for Sea Ice Monitoring;Sea Ice;2023-04-21

3. Polarimetric SAR Applications of Sea Ice: A Review;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2023

4. Compact Polarimetric Synthetic Aperture Radar for Target Detection: A review;IEEE Geoscience and Remote Sensing Magazine;2022-09

5. A Meta-Analysis of Sea Ice Monitoring Using Spaceborne Polarimetric SAR: Advances in the Last Decade;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3