Flood Hazard Risk Mapping Using a Pseudo Supervised Random Forest

Author:

Esfandiari Morteza,Abdi Ghasem,Jabari ShabnamORCID,McGrath Heather,Coleman DavidORCID

Abstract

Devastating floods occur regularly around the world. Recently, machine learning models have been used for flood susceptibility mapping. However, even when these algorithms are provided with adequate ground truth training samples, they can fail to predict flood extends reliably. On the other hand, the height above nearest drainage (HAND) model can produce flood prediction maps with limited accuracy. The objective of this research is to produce an accurate and dynamic flood modeling technique to produce flood maps as a function of water level by combining the HAND model and machine learning. In this paper, the HAND model was utilized to generate a preliminary flood map; then, the predictions of the HAND model were used to produce pseudo training samples for a R.F. model. To improve the R.F. training stage, five of the most effective flood mapping conditioning factors are used, namely, Altitude, Slope, Aspect, Distance from River and Land use/cover map. In this approach, the R.F. model is trained to dynamically estimate the flood extent with the pseudo training points acquired from the HAND model. However, due to the limited accuracy of the HAND model, a random sample consensus (RANSAC) method was used to detect outliers. The accuracy of the proposed model for flood extent prediction, was tested on different flood events in the city of Fredericton, NB, Canada in 2014, 2016, 2018, 2019. Furthermore, to ensure that the proposed model can produce accurate flood maps in other areas as well, it was also tested on the 2019 flood in Gatineau, QC, Canada. Accuracy assessment metrics, such as overall accuracy, Cohen’s kappa coefficient, Matthews correlation coefficient, true positive rate (TPR), true negative rate (TNR), false positive rate (FPR) and false negative rate (FNR), were used to compare the predicted flood extent of the study areas, to the extent estimated by the HAND model and the extent imaged by Sentinel-2 and Landsat satellites. The results confirm that the proposed model can improve the flood extent prediction of the HAND model without using any ground truth training data.

Funder

Natural Sciences and Engineering Research Council of Canada

New Brunswick Innovation Foundation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference76 articles.

1. Flood susceptibility mapping using integrated bivariate and multivariate statistical models

2. How Flood Experience and Risk Perception Influences Protective Actions and Behaviours among Canadian Homeowners

3. Flood damage, vulnerability and risk perception–challenges for flood damage research;Messner,2006

4. Assessing flash flood hazard in an arid mountainous region

5. Developing a holistic approach to assessing and managing coastal flood risk;Nicholls,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3