Abstract
Systemic risk, in a complex system with several interrelated variables, such as a financial market, is quantifiable from the multivariate probability distribution describing the reciprocal influence between the system’s variables. The effect of stress on the system is reflected by the change in such a multivariate probability distribution, conditioned to some of the variables being at a given stress’ amplitude. Therefore, the knowledge of the conditional probability distribution function can provide a full quantification of risk and stress propagation in the system. However, multivariate probabilities are hard to estimate from observations. In this paper, I investigate the vast family of multivariate elliptical distributions, discussing their estimation from data and proposing novel measures for stress impact and systemic risk in systems with many interrelated variables. Specific examples are described for the multivariate Student-t and the multivariate normal distributions applied to financial stress testing. An example of the US equity market illustrates the practical potentials of this approach.
Funder
European Commission
Engineering and Physical Sciences Research Council
ESRC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献