Optimization of Ammonia Oxidation Using Response Surface Methodology

Author:

Inger Marek,Dobrzyńska-Inger Agnieszka,Rajewski JakubORCID,Wilk Marcin

Abstract

In this paper, the design of experiments and response surface methodology were proposed to study ammonia oxidation process. The following independent variables were selected: the reactor’s load, the temperature of reaction and the number of catalytic gauzes, whereas ammonia oxidation efficiency and N2O concentration in nitrous gases were assumed as dependent variables (response). Based on the achieved results, statistically significant mathematical models were developed which describe the effect of independent variables on the analysed responses. In case of ammonia oxidation efficiency, its achieved value depends on the reactor’s load and the number of catalytic gauzes, whereas the temperature in the studied range (870–910 °C) has no effect on this dependent variable. The concentration of nitrous oxide in nitrous gases depends on all three parameters. The developed models were used for the multi-criteria optimization with the application of desirability function. Sets of parameters were achieved for which optimization assumptions were met: maximization of ammonia oxidation efficiency and minimization of the N2O amount being formed in the reaction.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3