Abstract
In solid oxide fuel cells, doped strontium titinates have been widely studied as anode materials due to their high n-type conductivity. They are used as current conducting backbones as an alternative to nickel-cermets, which suffer degradation due to coking, sulphur poisoning, and low tolerance to redox cycling. In this work, anode backbone materials were synthesized from La0.2Sr0.25Ca0.45TiO3−δ (LSCTA-), modified with 5 wt.% Zn, and infiltrated with nickel (Ni)/ceria gadolinium-doped cerium oxide (CGO), Fe, and Co. The electrodes were further studied for their electrochemical performance using electrochemical impedance spectroscopy (EIS) at open circuit voltage (OCV) in different hydrogen to steam ratios and at various operating temperatures (850–650 °C). Infiltration of electrocatalysts significantly reduced the polarization resistance and among the studied infiltrates, at all operating temperatures, Ni-CGO showed excellent electrode performance. The polarization resistances in 3% and 50% H2O/H2 atmosphere were found to be 0.072 and 0.025 Ω cm2, respectively, at 850 °C, and 0.091 and 0.076 Ω cm2, respectively, at 750 °C, with Ni-CGO. These values are approximately three orders of magnitude smaller than the polarization resistance (25 Ω cm2) of back bone material measured at 750 °C.
Funder
Horizon 2020 Framework Programme
IRSDIP
Subject
Physical and Theoretical Chemistry,Catalysis
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献