Author:
Andrew Swamidoss Caroline,Sheraz Mahshab,Anus Ali,Jeong Sangjae,Park Young-Kwon,Kim Young-Min,Kim Seungdo
Abstract
This paper evaluated the effect of calcination temperature and the use of Mg/Al2O3 on the decomposition of HFC-134a. Two commercialized catalysts, Al2O3 and Mg/Al2O3, were calcined at two different temperatures (500 and 650 °C) and their physicochemical characteristics were examined by X-ray diffraction, Brunauer–Emmett–Teller analysis, and the temperature-programed desorption of ammonia and carbon dioxide analysis. The results show that, in comparison to Al2O3, 5% Mg/Al2O3 exhibited a larger Brunauer–Emmett–Teller surface area and higher acidity. The relative amount of strong acid sites of the catalysts decreased with increasing calcination temperature. Although a more than 90% decomposition rate of HFC-134a was achieved over all catalysts during the sequential decomposition test of HFC-134a using a vertical plug flow reactor connected directly to a gas chromatography/mass spectrometry system, the lifetime of the catalyst differed according to the catalyst type. Compared to Al2O3, Mg/Al2O3 revealed a longer lifetime and less coke formation due to the increased Brunauer–Emmett–Teller surface area and weak Lewis acid sites and basic sites arising from Mg impregnation. Higher temperature calcination extended the catalyst lifetime with the formation of less coke due to the smaller number of strong acid sites, which can lead to severe coke formation. A valuable by-product, trifluoroethylene, was formed as a result of the decomposition. Based on the experimental results, a reaction is proposed which reasonably explains the decomposition reaction.
Funder
Korea Ministry of Environment
Subject
Physical and Theoretical Chemistry,Catalysis
Reference39 articles.
1. GLOBAL SURFACE TEMPERATURE CHANGE
2. Climate change, greenhouse gases and aerosols
3. IPCC Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change,2007
4. Removal of non-CO 2 greenhouse gases by large-scale atmospheric solar photocatalysis
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献