Abstract
The CeO2 ordinary amorphous, nanopolyhedrons, nanorods, and nanocubes were prefabricated by the hydrothermal method, and employed as carriers of Fe/W–CeO2 catalysts to selectively catalyze the reduction of NO with ammonia. Characterization results indicated that the morphology of CeO2 support originated from selectively exposing different crystal surfaces, which has a significant effect on oxygen vacancies, acid sites and the dispersion of Fe2O3. The CeO2 nanopolyhedrons catalyst (Fe/W–CeO2–P) showed most oxygen vacancies, the largest the quantity of acid sites, the largest BET (Brunauer-Emmett-Teller) surface area and the best dispersion of Fe2O3, which was associated with predominately exposing CeO2 (111) planes. Consequently, the Fe/W–CeO2–P catalyst has the highest NO conversion rate in the temperature range of 100–325 °C among the ordinary amorphous, nanorods, and nanocubes Fe/W–CeO2 catalysts.
Funder
National Natural Science Foundation of China
Subject
Physical and Theoretical Chemistry,Catalysis
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献