Evaluating the Impact of Climate Change on the Stream Flow in Soan River Basin (Pakistan)

Author:

Ismail Muhammad,Ahmed EhteshamORCID,Peng Gao,Xu Ruirui,Sultan MuhammadORCID,Khan Farhat Ullah,Aleem MuhammadORCID

Abstract

The global hydrological cycle is susceptible to climate change (CC), particularly in underdeveloped countries like Pakistan that lack appropriate management of precious freshwater resources. The study aims to evaluate CC impact on stream flow in the Soan River Basin (SRB). The study explores two general circulation models (GCMs), which involve Access 1.0 and CNRM-CM5 using three metrological stations (Rawalpindi, Islamabad, and Murree) data under two emission scenarios of representative concentration pathways (RCPs), such as RCP-4.5 and RCP-8.5. The CNRM-CM5 was selected as an appropriate model due to the higher coefficient of determination (R2) value for future the prediction of early century (2021–2045), mid-century (2046–2070), and late century (2071–2095) with baseline period of 1991–2017. After that, the soil and water assessment tool (SWAT) was utilized to simulate the stream flow of watersheds at the SRB for selected time periods. For both calibration and validation periods, the SWAT model’s performance was estimated based on the coefficient of determination (R2), percent bias (PBIAS), and Nash Sutcliffe Efficiency (NSE). The results showed that the average annual precipitation for Rawalpindi, Islamabad, and Murree will be decrease by 43.86 mm, 60.85 mm, and 86.86 mm, respectively, while average annual maximum temperature will be increased by 3.73 °C, 4.12 °C, and 1.33 °C, respectively, and average annual minimum temperature will be increased by 3.59 °C, 3.89 °C, and 2.33 °C, respectively, in early to late century under RCP-4.5 and RCP-8.5. Consequently, the average annual stream flow will be decreased in the future. According to the results, we found that it is possible to assess how CC will affect small water regions in the RCPs using small scale climate projections.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference69 articles.

1. Stocker, T. (2014). Climate Change 2013: The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press.

2. Communicating Climate Change: History, Challenges, Process and Future Directions;Wiley Interdiscip. Rev. Clim. Change,2010

3. A Global Assessment of the Impact of Climate Change on Water Scarcity;Clim. Change,2016

4. Pörtner, H.-O., Roberts, D.C., Adams, H., Adler, C., Aldunce, P., Ali, E., Begum, R.A., Betts, R., Kerr, R.B., and Biesbroek, R. (2022, September 06). Climate Change 2022: Impacts, Adaptation and Vulnerability. Available online: https://report.ipcc.ch/ar6/wg2/IPCC_AR6_WGII_FullReport.pdf.

5. Comprehensive Review of Groundwater Scarcity, Stress and Sustainability Index-Based Assessment;Groundw. Sustain. Dev.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3