A Compact Convolutional Neural Network for Surface Defect Inspection

Author:

Huang YibinORCID,Qiu Congying,Wang Xiaonan,Wang Shijun,Yuan Kui

Abstract

The advent of convolutional neural networks (CNNs) has accelerated the progress of computer vision from many aspects. However, the majority of the existing CNNs heavily rely on expensive GPUs (graphics processing units). to support large computations. Therefore, CNNs have not been widely used to inspect surface defects in the manufacturing field yet. In this paper, we develop a compact CNN-based model that not only achieves high performance on tiny defect inspection but can be run on low-frequency CPUs (central processing units). Our model consists of a light-weight (LW) bottleneck and a decoder. By a pyramid of lightweight kernels, the LW bottleneck provides rich features with less computational cost. The decoder is also built in a lightweight way, which consists of an atrous spatial pyramid pooling (ASPP) and depthwise separable convolution layers. These lightweight designs reduce the redundant weights and computation greatly. We train our models on groups of surface datasets. The model can successfully classify/segment surface defects with an Intel i3-4010U CPU within 30 ms. Our model obtains similar accuracy with MobileNetV2 while only has less than its 1/3 FLOPs (floating-point operations per second) and 1/8 weights. Our experiments indicate CNNs can be compact and hardware-friendly for future applications in the automated surface inspection (ASI).

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Stochastic image spectroscopy: a discriminative generative approach to hyperspectral image modelling and classification;Scientific Reports;2024-08-20

2. VRES-CNN: A Tiny Convolutional Image Classifier with Versatile Choice of Hyperparameters;2024 16th International Conference on Electronics, Computers and Artificial Intelligence (ECAI);2024-06-27

3. Detection of Rail Defects Caused by Fatigue due to Train Axles Using Machine Learning;Transportation Infrastructure Geotechnology;2024-05-31

4. A Lightweight Surface Defect Segmentation Network with External Semantics and High-frequency Information;Proceedings of the 2024 International Conference on Multimedia Retrieval;2024-05-30

5. Flotation froth image deblurring algorithm based on disentangled representations;Journal of Electronic Imaging;2024-05-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3