Learning Hierarchical Representations of Stories by Using Multi-Layered Structures in Narrative Multimedia

Author:

Lee O-JounORCID,Jung Jason J.ORCID,Kim Jin-Taek

Abstract

Narrative works (e.g., novels and movies) consist of various utterances (e.g., scenes and episodes) with multi-layered structures. However, the existing studies aimed to embed only stories in a narrative work. By covering other granularity levels, we can easily compare narrative utterances that are coarser (e.g., movie series) or finer (e.g., scenes) than a narrative work. We apply the multi-layered structures on learning hierarchical representations of the narrative utterances. To represent coarser utterances, we consider adjacency and appearance of finer utterances in the coarser ones. For the movies, we suppose a four-layered structure (character roles ∈ characters ∈ scenes ∈ movies) and propose three learning methods bridging the layers: Char2Vec, Scene2Vec, and Hierarchical Story2Vec. Char2Vec represents a character by using dynamic changes in the character’s roles. To find the character roles, we use substructures of character networks (i.e., dynamic social networks of characters). A scene describes an event. Interactions between characters in the scene are designed to describe the event. Scene2Vec learns representations of a scene from interactions between characters in the scene. A story is a series of events. Meanings of the story are affected by order of the events as well as their content. Hierarchical Story2Vec uses sequential order of scenes to represent stories. The proposed model has been evaluated by estimating the similarity between narrative utterances in real movies.

Funder

Institute for Information and Communications Technology Promotion

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3