A Novel Approach to Raman Distributed Temperature-Sensing System for Short-Range Applications

Author:

Pieracci Augusto1ORCID,Nanni Jacopo1ORCID,Tartarini Giovanni1,Lanzoni Massimo1

Affiliation:

1. Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi”, University of Bologna, 40136 Bologna, Italy

Abstract

A novel approach to the development of Distributed Temperature-Sensing (DTS) systems based on Raman Scattering in Multimode optical fibers operating at around 800 nm is presented, focusing on applications requiring temperature profile measurement in the range of a few hundreds of meters. In contrast to the standard Raman DTS systems, which aim to shorten the pulse space width as much as possible to improve the precision of measurement, the novel approach studied in this work is based on the use of pulses with a space width that is approximately equal to the distance covered by the fiber under test. The proposed technique relies on numerical post-processing to obtain the temperature profile measurement with a precision of about ±3 °C and a spatial resolution of 8 m, due to the transaction phases of the optical pulses. This solution simplifies the electronic circuit development, also minimizing the required laser peak power needed compared to the typical narrow pulse techniques.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3