A Shallow Convolutional Learning Network for Classification of Cancers Based on Copy Number Variations

Author:

AlShibli ,Mathkour

Abstract

Genomic copy number variations (CNVs) are among the most important structural variations. They are linked to several diseases and cancer types. Cancer is a leading cause of death worldwide. Several studies were conducted to investigate the causes of cancer and its association with genomic changes to enhance its management and improve the treatment opportunities. Classification of cancer types based on the CNVs falls in this category of research. We reviewed the recent, most successful methods that used machine learning algorithms to solve this problem and obtained a dataset that was tested by some of these methods for evaluation and comparison purposes. We propose three deep learning techniques to classify cancer types based on CNVs: a six-layer convolutional net (CNN6), residual six-layer convolutional net (ResCNN6), and transfer learning of pretrained VGG16 net. The results of the experiments performed on the data of six cancer types demonstrated a high accuracy of 86% for ResCNN6 followed by 85% for CNN6 and 77% for VGG16. The results revealed a lower prediction accuracy for one of the classes (uterine corpus endometrial carcinoma (UCEC)). Repeating the experiments after excluding this class reveals improvements in the accuracies: 91% for CNN6 and 92% for Res CNN6. We observed that UCEC and ovarian serous carcinoma (OV) share a considerable subset of their features, which causes a struggle for learning in the classifiers. We repeated the experiment again by balancing the six classes through oversampling of the training dataset and the result was an enhancement in both overall and UCEC classification accuracies.

Funder

Deanship of Scientific Research, King Saud University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ovarian cancer data analysis using deep learning: A systematic review;Engineering Applications of Artificial Intelligence;2024-12

2. Chromothripsis detection with multiple myeloma patients based on deep graph learning;Bioinformatics;2023-07-01

3. Multiclass Cancer Prediction Based on Copy Number Variation Using Deep Learning;Computational Intelligence and Neuroscience;2022-06-09

4. Transfer learning for non-image data in clinical research: A scoping review;PLOS Digital Health;2022-02-17

5. Fishing Vessel Type Recognition Based on Ship Position Data;2021 IEEE 4th International Conference on Electronics and Communication Engineering (ICECE);2021-12-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3