Continuous Distant Measurement of the User’s Heart Rate in Human-Computer Interaction Applications

Author:

Przybyło

Abstract

In real world scenarios, the task of estimating heart rate (HR) using video plethysmography (VPG) methods is difficult because many factors could contaminate the pulse signal (i.e. a subjects’ movement, illumination changes). This article presents the evaluation of a VPG system designed for continuous monitoring of the user's heart rate during typical human-computer interaction scenarios. The impact of human activities while working at the computer (i.e. reading and writing text, playing a game) on the accuracy of HR VPG measurements was examined. Three commonly used signal extraction methods were evaluated: green (G), green-red difference (GRD), blind source separation (ICA). A new method based on an excess green (ExG) image representation was proposed. Three algorithms for estimating pulse rate were used: power spectral density (PSD), autoregressive modeling (AR) and time domain analysis (TIME). In summary, depending on the scenario being studied, different combinations of signal extraction methods and the pulse estimation algorithm ensure optimal heart rate detection results. The best results were obtained for the ICA method: average RMSE = 6.1 bpm (beats per minute). The proposed ExG signal representation outperforms other methods except ICA (RMSE = 11.2 bpm compared to 14.4 bpm for G and 13.0 bmp for GRD). ExG also is the best method in terms of proposed success rate metric (sRate).

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference37 articles.

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Touchless Heart Rate Monitoring from an Unmanned Aerial Vehicle Using Videoplethysmography;Sensors;2023-08-21

2. A deep learning approach for remote heart rate estimation;Biomedical Signal Processing and Control;2022-04

3. Multi-Sensor Wearable Health Device Framework for Real-Time Monitoring of Elderly Patients Using a Mobile Application and High-Resolution Parameter Estimation;Frontiers in Human Neuroscience;2022-01-17

4. Touchless Pulse Diagnostics Methods and Devices: A Review;Advances in Intelligent Systems and Computing;2022

5. Design of Train Braking Distribution Simulator;The 4th International Conference on Information Technologies and Electrical Engineering;2021-10-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3