The Role of Chest Compressions on Ventilation during Advanced Cardiopulmonary Resuscitation

Author:

Azcarate Izaskun12ORCID,Urigüen Jose Antonio12ORCID,Leturiondo Mikel1ORCID,Sandoval Camilo Leonardo3ORCID,Redondo Koldo1ORCID,Gutiérrez José Julio1ORCID,Russell James Knox4ORCID,Wallmüller Pia5,Sterz Fritz5ORCID,Daya Mohamud Ramzan4,Ruiz de Gauna Sofía1ORCID

Affiliation:

1. Group of Signal and Communications, Bilbao School of Engineering, University of the Basque Country UPV/EHU, Plaza Torres Quevedo 1, 48013 Bilbao, Spain

2. Department of Applied Mathematics, Bilbao School of Engineering, University of the Basque Country UPV/EHU, Plaza Torres Quevedo 1, 48013 Bilbao, Spain

3. Unidades Tecnologicas de Santander, Bucaramanga, Santander 680005, Colombia

4. Center for Policy and Research in Emergency Medicine (CPR-EM), Department of Emergency Medicine, Oregon Health & Science University, Portland, OR 97239, USA

5. Department of Emergency Medicine, Medical University of Vienna, 1090 Vienna, Austria

Abstract

Background: There is growing interest in the quality of manual ventilation during cardiopulmonary resuscitation (CPR), but accurate assessment of ventilation parameters remains a challenge. Waveform capnography is currently the reference for monitoring ventilation rate in intubated patients, but fails to provide information on tidal volumes and inspiration–expiration timing. Moreover, the capnogram is often distorted when chest compressions (CCs) are performed during ventilation compromising its reliability during CPR. Our main purpose was to characterize manual ventilation during CPR and to assess how CCs may impact on ventilation quality. Methods: Retrospective analysis were performed of CPR recordings fromtwo databases of adult patients in cardiac arrest including capnogram, compression depth, and airway flow, pressure and volume signals. Using automated signal processing techniques followed by manual revision, individual ventilations were identified and ventilation parameters were measured. Oscillations on the capnogram plateau during CCs were characterized, and its correlation with compression depth and airway volume was assessed. Finally, we identified events of reversed airflow caused by CCs and their effect on volume and capnogram waveform. Results: Ventilation rates were higher than the recommended 10 breaths/min in 66.7% of the cases. Variability in ventilation rates correlated with the variability in tidal volumes and other ventilatory parameters. Oscillations caused by CCs on capnograms were of high amplitude (median above 74%) and were associated with low pseudo-volumes (median 26 mL). Correlation between the amplitude of those oscillations with either the CCs depth or the generated passive volumes was low, with correlation coefficients of −0.24 and 0.40, respectively. During inspiration and expiration, reversed airflow events caused opposed movement of gases in 80% of ventilations. Conclusions: Our study confirmed lack of adherence between measured ventilation rates and the guideline recommendations, and a substantial dispersion in manual ventilation parameters during CPR. Oscillations on the capnogram plateau caused by CCs did not correlate with compression depth or associated small tidal volumes. CCs caused reversed flow during inspiration, expiration and in the interval between ventilations, sufficient to generate volume changes and causing oscillations on capnogram. Further research is warranted to assess the impact of these findings on ventilation quality during CPR.

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3