Approachable Synthetic Methodologies for Second-Generation β-Lactamase Inhibitors: A Review

Author:

Fatima Noor1,Khalid Shehla1ORCID,Rasool Nasir1ORCID,Imran Muhammad2ORCID,Parveen Bushra1ORCID,Kanwal Aqsa1ORCID,Irimie Marius3,Ciurea Codrut Ioan3ORCID

Affiliation:

1. Department of Chemistry, Government College University, Faisalabad 38000, Pakistan

2. Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia

3. Faculty of Medicine, Transylvania University of Brasov, 500036 Brasov, Romania

Abstract

Some antibiotics that are frequently employed are β-lactams. In light of the hydrolytic process of β-lactamase, found in Gram-negative bacteria, inhibitors of β-lactamase (BLIs) have been produced. Examples of first-generation β-lactamase inhibitors include sulbactam, clavulanic acid, and tazobactam. Many kinds of bacteria immune to inhibitors have appeared, and none cover all the β-lactamase classes. Various methods have been utilized to develop second-generation β-lactamase inhibitors possessing new structures and facilitate the formation of diazabicyclooctane (DBO), cyclic boronate, metallo-, and dual-nature β-lactamase inhibitors. This review describes numerous promising second-generation β-lactamase inhibitors, including vaborbactam, avibactam, and cyclic boronate serine-β-lactamase inhibitors. Furthermore, it covers developments and methods for synthesizing MβL (metallo-β-lactamase inhibitors), which are clinically effective, as well as the various dual-nature-based inhibitors of β-lactamases that have been developed. Several combinations are still only used in preclinical or clinical research, although only a few are currently used in clinics. This review comprises materials on the research progress of BLIs over the last five years. It highlights the ongoing need to produce new and unique BLIs to counter the appearance of multidrug-resistant bacteria. At present, second-generation BLIs represent an efficient and successful strategy.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3