Adsorption of Pesticides on Activated Carbons from Peach Stones

Author:

Harabi Souha1,Guiza Sami1ORCID,Álvarez-Montero Ariadna2ORCID,Gómez-Avilés Almudena2ORCID,Bagané Mohamed1,Belver Carolina2ORCID,Bedia Jorge2ORCID

Affiliation:

1. Applied Thermodynamics Research Laboratory, National Engineering School of Gabes, University of Gabes, Gabes 6029, Tunisia

2. Chemical Engineering Department, Universidad Autónoma de Madrid, Campus Cantoblanco, E-28049 Madrid, Spain

Abstract

This study analyzes the adsorption of two model pesticides, namely, 2,4-dichlorophenoxyacetic acid (2,4-D) and carbofuran on activated carbons obtained by chemical activation with phosphoric acid of peach stones. The effect of the synthesis conditions on the surface area development was analyzed. The highest surface area was obtained with an impregnation time of 5 h, an impregnation ratio equal to 3.5, an activation temperature of 400 °C, and 4.5 h of activation time. Under these conditions, the maximum specific surface area was equal to 1182 m2·g−1 which confirms the high porosity of the activated carbon, predominantly in the form of micropores. The surface chemistry of this activated carbon was also characterized using pH at point of zero charge, scanning electron microscopy, and Fourier transform infrared spectroscopy. Both kinetics and equilibrium adsorption tests were performed. Adsorption kinetics confirmed that 2,4-D adsorption follows a pseudo first-order adsorption kinetic model, while carbofuran adsorption is better described by a pseudo second-order one. Regarding the equilibrium adsorption, a higher adsorption capacity is obtained for 2,4-D than carbofuran (c.a. 500 and 250 mg·g−1, respectively). The analysis of the thermodynamics and characterization after use suggest a predominantly physisorption nature of the process.

Funder

Spanish “Agencia Estatal de Investigación” from “Ministerio de Ciencia e Innovación”

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3