An Improved YOLOv7-Based Model for Real-Time Meter Reading with PConv and Attention Mechanisms

Author:

Peng Xiancheng1,Chen Yangzhuo2,Cai Xiaowen2ORCID,Liu Jun1

Affiliation:

1. Artificial Intelligence, Xiangtan University, Xiangtan 411100, China

2. School of Automation and Electronic Information, Xiangtan University, Xiangtan 411100, China

Abstract

With the increasing complexity of the grid meter dial, precise feature extraction is becoming more and more difficult. Many automatic recognition solutions have been proposed for grid meter readings. However, traditional inspection methods cannot guarantee detection accuracy in complex environments. So, deep-learning methods are combined with grid meter recognition. Existing recognition systems that utilize segmentation models exhibit very high computation. It is challenging to ensure high real-time performance in edge computing devices. Therefore, an improved meter recognition model based on YOLOv7 is proposed in this paper. Partial convolution (PConv) is introduced into YOLOv7 to create a lighter network. Different PConv introduction locations on the base module have been used in order to find the optimal approach for reducing the parameters and floating point of operations (FLOPs). Meanwhile, the dynamic head (DyHead) module is utilized to enhance the attention mechanism for the YOLOv7 model. It can improve the detection accuracy of striped objects. As a result, this paper achieves mAP50val of 97.87% and mAP50:90val of 62.4% with only 5.37 M parameters. The improved model’s inference speed can reach 108 frames per second (FPS). It enables detection accuracy that can reach ±0.1 degrees in the grid meter.

Funder

Key Research and Development Program of Hunan Province of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3