Sensing with Polarized LIDAR in Degraded Visibility Conditions Due to Fog and Low Clouds

Author:

Ronen Ayala,Agassi Eyal,Yaron Ofer

Abstract

LIDAR (Light Detection and Ranging) sensors are one of the leading technologies that are widely considered for autonomous navigation. However, foggy and cloudy conditions might pose a serious problem for a wide adoption of their use. Polarization is a well-known mechanism often applied to improve sensors’ performance in a dense atmosphere, but is still not commonly applied, to the best of our knowledge, in self-navigated devices. This article explores this issue, both theoretically and experimentally, and focuses on the dependence of the expected performance on the atmospheric interference type. We introduce a model which combines the well-known LIDAR equation with Stocks vectors and the Mueller matrix formulations in order to assess the magnitudes of the true target signal loss as well as the excess signal that arises from the scattering medium radiance, by considering the polarization state of the E–M (Electro-Magnetic) waves. Our analysis shows that using the polarization state may recover some of the poor performance of such systems for autonomous platforms in low visibility conditions, but it depends on the atmospheric medium type. This conclusion is supported by measurements held inside an aerosol chamber within a well-controlled and monitored artificial degraded visibility atmospheric environment. The presented analysis tool can be used for the optimization of design and trade-off analysis of LIDAR systems, which allow us to achieve the best performance for self-navigation in all weather conditions.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3