Multivariate Analysis as a Method to Evaluate Antigenic Relationships between Bovine Viral Diarrhea Virus 1b Isolates and Vaccine Strains

Author:

Falkenberg Shollie M.12ORCID,Ma Hao2,Casas Eduardo2,Dassanayake Rohana P.2,Bolton Michael W.3,Raithel Gage1,Silvis Scott1,Neill John D.2,Walz Paul H.1

Affiliation:

1. Sugg Laboratory, Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA

2. Ruminant Disease and Immunology Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, Ames, IA 50010, USA

3. Spring Hill Farm Consulting, Honor, MI 49640, USA

Abstract

The antigenicity of bovine viral diarrhea virus (BVDV) has been evaluated using virus-neutralizing titer data analyzed by principal component analysis (PCA) and has demonstrated numerous isolates to be antigenically divergent from US vaccine strains. The lack of BVDV-1b strains in currently licensed vaccines has raised concerns regarding the lack of protection against BVDV-1b field strains. The aim of this study was to evaluate the antigenic diversity of BVDV-1b strains and better understand the breadth of antigenic relatedness using BVDV-1b antisera and antisera from vaccine strains. Results from this analysis demonstrate the antigenic diversity observed among BVDV-1b isolates and genetic assignment into the BVDV-1b subgenotype is not representative of antigenic relatedness. This is demonstrated by BVDV-1b isolates (2280N, SNc, Illc, MSU, and 2337) observed to be as antigenically dissimilar as BVDV-2a isolates when using BVDV-1b antisera. Additionally, when BVDV-1a vaccine antisera was used for comparisons, a greater percentage of BVDV-1b isolates clustered with BVDV-1a vaccine strains as part of PC1, suggesting antigenic relatedness and potentially partial protection. Collectively, data from this study would suggest that while most BVDV-1b isolates are antigenically similar, there are antigenically dissimilar BVDV-1b isolates as determined by the lack of cross-reactivity, which may contribute to the lack of protection.

Funder

USDA/Agricultural Research Service, National Animal Disease Center

Animal Health, Merck & Co., Rahway, NJ, USA

Publisher

MDPI AG

Subject

Virology,Infectious Diseases

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3