Author:
Kampelis Nikos,Tsekeri Elisavet,Kolokotsa Dionysia,Kalaitzakis Kostas,Isidori Daniela,Cristalli Cristina
Abstract
Demand Response (DR) is a fundamental aspect of the smart grid concept, as it refers to the necessary open and transparent market framework linking energy costs to the actual grid operations. DR allows consumers to directly or indirectly participate in the markets where energy is being exchanged. One of the main challenges for engaging in DR is associated with the initial assessment of the potential rewards and risks under a given pricing scheme. In this paper, a Genetic Algorithm (GA) optimisation model, using Artificial Neural Network (ΑΝΝ) power predictions for day-ahead energy management at the building and district levels, is proposed. Individual building and building group analysis is conducted to evaluate ANN predictions and GA-generated solutions. ANN-based short term electric power forecasting is exploited in predicting day-ahead demand, and form a baseline scenario. GA optimisation is conducted to provide balanced load shifting and cost-of-energy solutions based on two alternate pricing schemes. Results demonstrate the effectiveness of this approach for assessing DR load shifting options based on a Time of Use pricing scheme. Through the analysis of the results, the practical benefits and limitations of the proposed approach are addressed.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献