Total Suspended Particle Emissions Modelling in an Industrial Boiler

Author:

Ronquillo-Lomeli Guillermo,Herrera-Ruiz Gilberto,Ríos-Moreno José,Ramirez-Maya Irving,Trejo-Perea Mario

Abstract

Particulate matter emission into the atmosphere is a massive-scale problem. Fossil fuel combustion is an important source of this kind of pollution. The knowledge of total suspended particle (TSP) emissions is the first step for TSP control. The formation of TSP emissions is poorly understood; therefore new approaches for TSP emissions source modelling are required. TSP modelling is a multi-variable non-linear problem that would only require basic information on boiler operation. This work reports the development of a non-linear model for TSP emissions estimation from an industrial boiler based on a one-layer neural network. Expansion polynomial basic functions combined with an orthogonal least-square and model structure selection approach were used for modelling. The model required five independent boiler variables for TSP emissions estimation. Data from the data acquisition system of a 350 MW industrial boiler were used for model development and validation. The results show that polynomial expansion basic functions are an excellent approach to solve modelling problems related to complex non-linear systems in the industry.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Nonlinear Modeling of Industrial Boiler NOx Emissions;Journal of the Air & Waste Management Association;2021-09-14

2. An alternative methodology to evaluate sites using climatology criteria for hosting wind, solar, and hybrid plants;Energy Sources, Part A: Recovery, Utilization, and Environmental Effects;2020-06-02

3. Comparison of Suspended Particulate Matter Prediction Based on Linear and Non-Linear Models;IOP Conference Series: Earth and Environmental Science;2020-03-01

4. Special Issue “Intelligent Control in Energy Systems”;Energies;2019-08-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3