Study on Dehumidification Performance of a Multi-Stage Internal Cooling Solid Desiccant Adsorption Packed Bed

Author:

Yang Wansheng,Ren Jiayun,Lin Zhongqi,Wang Zhangyuan,Zhao XudongORCID

Abstract

In this paper, the solid desiccant adsorption packed bed with a three-stage internal cooling (ICSPB) has been proposed to improve the dehumidification efficiency and make a comparison with that of non-internal cooling. To investigate the performance of the ICSPB, the dehumidification capacity, dehumidification efficiency, water content of solid desiccant, moisture ratio of solid desiccant, temperature of solid desiccant and inlet and outlet air temperature difference were discussed in different conditions of inlet air and supplying water temperature. It was found that the dehumidification performance of the bed with internal cooling could be improved greatly in the low temperature and low humidity conditions, while in the high temperature and humid, the improvement was not obvious. With internal cooling, the dehumidification efficiency and the water content of the solid desiccant could be improved 59.69% and 110.7%, respectively, and the temperature of solid desiccant could be reduced 2.2 °C when the ICSPB operated at the inlet air temperature of 20 °C, inlet humidity of 55%, and water temperature of 14 °C. Moreover, the dehumidification performance at each stage of ICSPB was studied. It was found that, the first stage played the most important role in the dehumidification process. In addition, the calculation models that can be used to predict the moisture ratio and the temperature of solid desiccant were established on the test results.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3