A Novel Integrated Method to Diagnose Faults in Power Transformers

Author:

Wu Jing,Li Kun,Sun Jing,Xie Li

Abstract

In a smart grid, many transformers are equipped for both power transmission and conversion. Because a stable operation of transformers is essential to maintain grid security, studying the fault diagnosis method of transformers can improve both fault detection and fault prevention. In this paper, a data-driven method, which uses a combination of Principal Component Analysis (PCA), Particle Swarm Optimization (PSO), and Support Vector Machines (SVM) to enable a better fault diagnosis of transformers, is proposed and investigated. PCA is used to reduce the dimension of transformer fault state data, and an improved PSO algorithm is used to obtain the optimal parameters for the SVM model. SVM, which is optimized using PSO, is used for the transformer-fault diagnosis. The diagnostic-results of the actual transformers confirm that the new method is effective. We also verified the importance of data richness with respect to the accuracy of the transformer-fault diagnosis.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3