Author:
Wu Jing,Li Kun,Sun Jing,Xie Li
Abstract
In a smart grid, many transformers are equipped for both power transmission and conversion. Because a stable operation of transformers is essential to maintain grid security, studying the fault diagnosis method of transformers can improve both fault detection and fault prevention. In this paper, a data-driven method, which uses a combination of Principal Component Analysis (PCA), Particle Swarm Optimization (PSO), and Support Vector Machines (SVM) to enable a better fault diagnosis of transformers, is proposed and investigated. PCA is used to reduce the dimension of transformer fault state data, and an improved PSO algorithm is used to obtain the optimal parameters for the SVM model. SVM, which is optimized using PSO, is used for the transformer-fault diagnosis. The diagnostic-results of the actual transformers confirm that the new method is effective. We also verified the importance of data richness with respect to the accuracy of the transformer-fault diagnosis.
Funder
National Natural Science Foundation of China
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献