Analysis of the Impact of Auxiliary Ventilation Equipment on the Distribution and Concentration of Methane in the Tailgate

Author:

Tutak MagdalenaORCID,Brodny Jarosław

Abstract

Methane, which is commonly found in hard coal deposits, represents a considerable threat to the safety of mining operations in these deposits. The paper presents the results of tests, aiming to limit the negative impact of methane on hard coal exploitation and improve work safety. The tests encompassed an analysis of methane concentration distributions in the tailgate (in the intersection area with the longwall), with account being taken of auxiliary ventilation equipment. This equipment is responsible for reducing methane concentration levels in the intersection area between the longwall and the tailgate. The analyses presented in the article were conducted for a spatial model of a longwall area, using the Computational Fluid Dynamics (CFD) method. Account was taken of the real-world measurements of the headings as well as the measurement data concerning methane concentration and ventilation parameters. The tests took into account methane emissions from the mined coal and from the goaf with caving. The analyses were performed for the system with and without auxiliary equipment, for different velocities of the additional air stream. This made it possible to compare both systems and determine the impact of auxiliary equipment on the distribution and concentration of methane in the most vulnerable area of exploitation. The distributions of the air and gas mixture were also determined in the analysed headings and goaf with caving. The results obtained clearly demonstrate that using auxiliary equipment has a significant effect on the ventilation parameters of the air stream and leads to reduction in methane concentrations in the most vulnerable section of the longwall. These results also confirmed the advantages of auxiliary ventilation equipment, which should contribute to their wider application in underground hard coal exploitation.

Funder

Ministerstwo Nauki i Szkolnictwa Wyższego

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3