Real-World Urban Light Emission Functions and Quantitative Comparison with Spacecraft Measurements

Author:

Espey Brian R.1ORCID,Yan Xinhang1ORCID,Patrascu Kevin1

Affiliation:

1. School of Physics, Trinity College Dublin, University of Dublin, College Green, Dublin 2, Ireland

Abstract

We provide quantitative results from GIS-based modelling of urban emission functions for a range of representative low- and mid-rise locations, ranging from individual streets to residential communities within cities, as well as entire towns and city regions. Our general aim is to determine whether lantern photometry or built environment has the dominant effect on light pollution and whether it is possible to derive a common emission function applicable to regions of similar type. We demonstrate the scalability of our work by providing results for the largest urban area modelled to date, comprising the central 117 km2 area of Dublin City and containing nearly 42,000 public lights. Our results show a general similarity in the shape of the azimuthally averaged emission function for all areas examined, with differences in the angular distribution of total light output depending primarily on the nature of the lighting and, to a smaller extent, on the obscuring environment, including seasonal foliage effects. Our results are also consistent with the emission function derived from the inversion of worldwide skyglow data, supporting our general results by an independent method. Additionally, a comparison with global satellite observations shows that our results are consistent with the deduced angular emission function for other low-rise areas worldwide. Finally, we validate our approach by demonstrating very good agreement between our results and calibrated imagery taken from the International Space Station of a range of residential locations. To our knowledge, this is the first such detailed quantitative verification of light loss calculations and supports the underlying assumptions of the emission function model. Based on our findings, we conclude that it should be possible to apply our approach more generally to produce estimates of the energy and environmental impact of urban areas, which can be applied in a statistical sense. However, more accurate values will depend on the details of the particular locations and require treatment of atmospheric scattering, as well as differences in the spectral nature of the sources.

Funder

Sustainable Energy Authority of Ireland

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3