3D Point Cloud Object Detection Algorithm Based on Temporal Information Fusion and Uncertainty Estimation

Author:

Xie Guangda1,Li Yang2,Wang Yanping2,Li Ziyi1,Qu Hongquan2

Affiliation:

1. College of Electrical and Control Engineering, North China University of Technology, Beijing 100144, China

2. College of Information, North China University of Technology, Beijing 100144, China

Abstract

In autonomous driving, LiDAR (light detection and ranging) data are acquired over time. Most existing 3D object detection algorithms propose the object bounding box by processing each frame of data independently, which ignores the temporal sequence information. However, the temporal sequence information is usually helpful to detect the object with missing shape information due to long distance or occlusion. To address this problem, we propose a temporal sequence information fusion 3D point cloud object detection algorithm based on the Ada-GRU (adaptive gated recurrent unit). In this method, the feature of each frame for the LiDAR point cloud is extracted through the backbone network and is fed to the Ada-GRU together with the hidden features of the previous frames. Compared to the traditional GRU, the Ada-GRU can adjust the gating mechanism adaptively during the training process by introducing the adaptive activation function. The Ada-GRU outputs the temporal sequence fusion features to predict the 3D object in the current frame and transmits the hidden features of the current frame to the next frame. At the same time, the label uncertainty of the distant and occluded objects affects the training effect of the model. For this problem, this paper proposes a probability distribution model of 3D bounding box coordinates based on the Gaussian distribution function and designs the corresponding bounding box loss function to enable the model to learn and estimate the uncertainty of the positioning of the bounding box coordinates, so as to remove the bounding box with large positioning uncertainty in the post-processing stage to reduce the false positive rate. Finally, the experiments show that the methods proposed in this paper improve the accuracy of the object detection without significantly increasing the complexity of the algorithm.

Funder

National Natural Science Foundation of China

Beijing Municipal Commission of Education

North China University of Technology

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on Point Cloud Upsampling Technologies;Journal of Image and Signal Processing;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3