Analysis and Validation of the Aerosol Optical Depth of MODIS Products in Gansu Province, Northwest China

Author:

Huang Fangfang1,Ma Weiqiang2345ORCID,Wang Suichan1,Feng Chao6,Kong Xiaoyi1,Liu Hao1

Affiliation:

1. Gansu Meteorological Information and Technology Support Center, Gansu Meteorological Bureau, Lanzhou 730020, China

2. Land-Atmosphere Interaction and Its Climatic Effects Group, State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China

3. College of Atmospheric Science, Lanzhou University, Lanzhou 730000, China

4. National Observation and Research Station for Qomolongma Special Atmospheric Processes and Environmental Changes, Shigatse 858200, China

5. China-Pakistan Joint Research Center on Earth Sciences, Chinese Academy of Sciences, Islamabad 45320, Pakistan

6. Research Institute of Petroleum Exploration & Development-Northwest, PetroChina, Lanzhou 730020, China

Abstract

The accurate determination of aerosol optical depth (AOD) is of great importance for climate change research and environmental monitoring. To understand the applicability of the MODIS aerosol product inversion algorithm in Gansu Province, this work uses ground-based solar photometer AOD observation data to validate the MODIS C6 version of the AOD product. Additionally, the retrieval accuracy of MODIS C6 Deep Blue (DB) algorithm AOD products and Deep Blue and Dark Target Fusion (DB–DT combined) algorithm AOD products for Gansu Province when setting different spatial sampling windows is compared and analyzed. Meanwhile, the monitoring effects of these two AOD algorithms in typical polluted atmospheric conditions in Gansu Province are compared. The results show that (1) the correlation between the MODIS AOD products of the two algorithms and the ground-based observation data decreases with an increasing spatial sampling window size. When the spatial sampling window of the two algorithms is set at 30 km × 30 km, it is more representative of the AOD value in Gansu Province, thus reflecting local characteristics. (2) When the spatial sampling window is set at 30 km × 30 km, the inversion effect of the DB algorithm AOD is better than that of the DB–DT combined algorithm AOD on different underlying surfaces. (3) The seasonal variability in the inversion accuracy of the DB algorithm AOD is less than that of the DB–DT combined algorithm, and it has inversion advantages in spring, autumn and winter, while the DB–DT combined algorithm outperforms the DB algorithm only in winter. The inversion effect of the two algorithms on AOD is influenced by the spatial sampling window setting. (4) Both the DB algorithm AOD and the DB–DT combined algorithm AOD can monitor the distribution of AOD in the central and western regions of Gansu, especially for high values of AOD under polluted atmospheric conditions, which represents a good monitoring effect. However, the two algorithms perform poorly in monitoring the southeast region of Gansu, while there is a discontinuous AOD distribution in the northwest region of Gansu. Overall, the MODIS DB algorithm AOD product has higher applicability in Gansu Province. This work provides a good reference for local air pollution and climate prediction.

Funder

Science and Technology Program (Innovation Base and Talent Program) Projects of Gansu Province

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference49 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3