A Feature-Level Point Cloud Fusion Method for Timber Volume of Forest Stands Estimation

Author:

Guo Lijie123,Wu Yanjie123ORCID,Deng Lei123ORCID,Hou Peng4,Zhai Jun4ORCID,Chen Yan4

Affiliation:

1. College of Resource Environment and Tourism, Capital Normal University, Beijing 100048, China

2. Engineering Research Center of Spatial Information Technology, Ministry of Education, Capital Normal University, Beijing 100048, China

3. Beijing Laboratory of Water Resources Security, Capital Normal University, Beijing 100048, China

4. Satellite Application Center for Ecology and Environment, Ministry of Ecology and Environment, Beijing 100094, China

Abstract

Accurate diameter at breast height (DBH) and tree height (H) information can be acquired through terrestrial laser scanning (TLS) and airborne LiDAR scanner (ALS) point cloud, respectively. To utilize these two features simultaneously but avoid the difficulties of point cloud fusion, such as technical complexity and time-consuming and laborious efforts, a feature-level point cloud fusion method (FFATTe) is proposed in this paper. Firstly, the TLS and ALS point cloud data in a plot are georeferenced by differential global navigation and positioning system (DGNSS) technology. Secondly, point cloud processing and feature extraction are performed for the georeferenced TLS and ALS to form feature datasets, respectively. Thirdly, the feature-level fusion of LiDAR data from different data sources is realized through spatial join according to the tree trunk location obtained from TLS and ALS, that is, the tally can be implemented at a plot. Finally, the individual tree parameters are optimized based on the tally results and fed into the binary volume model to estimate the total volume (TVS) in a large area (whole study area). The results show that the georeferenced ALS and TLS point cloud data using DGNSS RTK/PPK technology can achieve coarse registration (mean distance ≈ 40 cm), which meets the accuracy requirements for feature-level point cloud fusion. By feature-level fusion of the two point cloud data, the tally can be achieved quickly and accurately in the plot. The proposed FFATTe method achieves high accuracy (with error of 3.09%) due to its advantages of combining different LiDAR data from different sources in a simple way, and it has strong operability when acquiring TVS over large areas.

Funder

R&D Program of Beijing Municipal Education Commission

Special Project of High-Resolution Earth Observation System

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3