Assimilating All-Sky Infrared Radiance Observations to Improve Ensemble Analyses and Short-Term Predictions of Thunderstorms

Author:

Zhang Huanhuan123,Xu Qin4ORCID,Jones Thomas A.24,Ran Lingkun1

Affiliation:

1. Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

2. Cooperative Institute for Severe and High-Impact Weather Research and Operations, University of Oklahoma, Norman, OK 73072, USA

3. University of Chinese Academy of Sciences, Beijing 100029, China

4. NOAA/OAR/National Severe Storms Laboratory, Norman, OK 73072, USA

Abstract

The experimental rapid-cycling Ensemble Kalman Filter (EnKF) in the convection-allowing ensemble-based Warn-on-Forecast System (WoFS) at the National Severe Storms Laboratory (NSSL) is used to assimilate all-sky infrared radiance observations from the GOES-16 7.3 μm water vapor channel in combination with radar wind and reflectivity observations to improve the analysis and subsequent forecast of severe thunderstorms (which occurred in Oklahoma on 2 May 2018). The method for radiance data assimilation is based primarily on the version used in WoFS. In addition, the methods for adaptive observation error inflation and background error inflation and the method of time-expanded sampling are also implemented in two groups of experiments to test their effectiveness and examine the impacts of radar observations and all-sky radiance observations on ensemble analyses and predictions of severe thunderstorms. Radar reflectivity observations and brightness temperature observations from the GOES-16 6.9 μm mid-level troposphere water vapor channel and 11.2 μm longwave window channel are used to evaluate the assimilation statistics and verify the forecasts in each experiment. The primary findings from the two groups of experiments are summarized: (i) Assimilating radar observations improves the overall (heavy) precipitation forecast up to 5 (4) h, according to the improved composite reflectivity forecast skill scores. (ii) Assimilating all-sky water vapor infrared radiance observations from GOES-16 in addition to radar observations improves the brightness temperature assimilation statistics and subsequent cloud cover forecast up to 6 h, but the improvements are not significantly affected by the adaptive observation and background error inflations. (iii) Time-expanded sampling can not only reduce the computational cost substantially but also slightly improve the forecast.

Funder

Office of Naval Research

National Natural Science Foundation of China

NOAA/Office of Oceanic and Atmospheric Research

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3