A Combined Deep Learning and Prior Knowledge Constraint Approach for Large-Scale Forest Disturbance Detection Using Time Series Remote Sensing Data

Author:

Du Bing123,Yuan Zhanliang3,Bo Yanchen12ORCID,Zhang Yusha12

Affiliation:

1. State Key Laboratory of Remote Sensing Science, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China

2. Beijing Engineering Research Center for Global Land Remote Sensing Products, Institute of Remote Sensing Science and Engineering, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China

3. School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China

Abstract

The scale and severity of forest disturbances across the globe are increasing due to climate change and human activities. Remote sensing analysis using time series data is a powerful approach for detecting large-scale forest disturbances and describing detailed forest dynamics. Various large-scale forest disturbance detection algorithms have been proposed, but most of them are only suitable for detecting high-magnitude forest disturbances (e.g., fire, harvest). Conversely, more continuous, subtle, and gradual lower-magnitude forest disturbances (e.g., thinning, pests, and diseases) have been subject to less focus. Deep learning (DL) can distinguish subtle differences in information within time series data, offering new opportunities to capture forest disturbances in a complete and detailed way. This study proposes an approach for analyzing forest dynamics across large areas and long time periods by combining DL time series classification and prior knowledge constraint. The approach consists of two stages: (1) an improved self-attention model used for time series classification to identify sequences with forest disturbance characteristics; (2) developed skip-disturbance recovery index (S-DRI) characterizing the temporal context, using prior knowledge constraint to identify forest disturbance years in time series with disturbance characteristics. In this study, the year of forest disturbances in five study areas located in the United States, Canada, and Poland from 2001 to 2020 was mapped. A total of 3082 manually interpreted test data with different disturbance causal agents (such as fire, harvest, conversion, hurricane, and pests) were sampled from five research areas for validation. Our approach was also evaluated against two forest disturbance benchmark datasets derived from LandTrendr and the Global Forest Change (GFC) dataset. The results demonstrate that our approach achieved an overall accuracy of 87.8%, surpassing the accuracy of LandTrendr (84.6%) and the Global Forest Change dataset (81.4%). Furthermore, our approach demonstrated lower omission rates (ranging from 10.0% to 67.4%) in detecting subtle to severe causal agents of forest disturbance, in comparison to LandTrendr (with a range of 18.0% to 81.6%) and GFC (with a range of 15.0% to 88.8%). This study, which involved mapping large-scale and long-term forest disturbance in multiple regions, revealed that our approach can be applied to new areas without a requirement for complex parameter adjustments. These results demonstrate the potential of our approach in generating comprehensive and detailed forest disturbance data, thus providing a new and effective method in this domain.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3