Numerical Simulation and Consequence Analysis of Full-Scale Jet Fires for Pipelines Transporting Pure Hydrogen or Hydrogen Blended with Natural Gas

Author:

Li Meng12,Wang Zhenhua12ORCID,Jiang Juncheng1,Lin Wanbing12,Ni Lei1ORCID,Pan Yong1ORCID,Wang Guanghu12

Affiliation:

1. College of Safety Science and Engineering, Nanjing Tech University, Nanjing 211816, China

2. Institute of Fire Science and Engineering, Nanjing Tech University, Nanjing 211816, China

Abstract

The use of existing natural gas pipelines for the transport of hydrogen/natural gas mixtures can achieve large-scale, long-distance and low-cost hydrogen transportation. A jet fire induced by the leakage of high-pressure pure hydrogen and hydrogen-blended natural gas pipelines may pose a severe threat to life and property. Based on the Abel–Nobel equation of state and a notional nozzle model, an equivalent pipe leakage model is established to simulate high-pressure pipeline gas leakage jet fire accidents. Large-scale high-pressure hydrogen and natural gas/hydrogen mixture jet fires are simulated, showing the jet impingement process and obtaining an accurate and effective simulation framework. This framework is validated by comparing the simulated and experimental measured results of flame height, flame appearance and thermal radiation. Several combustion models are compared, and the simulated data show that the non-premixed chemical equilibrium combustion model is superior to other combustion models. The influence of the pipe pressure and the hydrogen blending ratio on the consequences of natural gas/hydrogen mixture pipeline leakage jet fire accidents is explored. It is found that when the hydrogen blending ratio is lower than 22%, the increase in the hydrogen blending ratio has little effect on the decrease in the thermal radiation hazard distance.

Funder

Jiangsu Provincial Key R&D Programme-Social Development

Natural Science Foundation of Jiangsu Province

China Postdoctoral Science Foundation

Jiangsu Funding Program for Excellent Postdoctoral Talent

Natural Science Foundation of the Jiangsu Higher Education Institutions of China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3